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Introduction > Clustering in the Goal Space » Ablation study:
> Pre-training on task-agnostic datasets can accelerate RL for downstream « High-dimensional, continuous goals s9 € S as high-level actions « PTGM maintains stable performance as the number of clusters increases.
tasks. One promising approach is pre-training low-level skills to provide make RL inefficient. » The goal prior model stabilizes RL training.
temporal abstractions. « We use t-SNE and K-Means to cluster goals in the dataset and use « Temporal abstraction improves sample efficiency.
» Existing methods have not yet scaled to high-dimensional, complex open- the N cluster centers to represent all goals.
world environments or large datasets: » Downstream RL uses a discrete action space A" = [N]. 155 N Eluster- 109 10 KL welght- Log 15— oM EVE SEEPS - SpICEr
(1) Fail to accurately generate long action sequences in large action spaces. S Y
(2) Downstream RL in continuous latent action spaces tends to be > The Goal Prior Model "o "W%Af\.pv/\lm ! -
inefficient. * \We propose learning a prior about ‘how to select the goal’ to 06- MWJ ﬂ 06 ¥ - VW

effectively guide the high-level RL policy.
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&D » Train a high-level policy mg(a"|s) to maximize a combination of the
task return and a goal prior regularization term. : :
Task-agnostic dataset =~ Pre-training skills Downstream RL i et i Qu alitative Stu dy
- » Visualization of the goal clusters in Minecraft: each cluster represents an interpretable
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J(6) = Em ;7 ( Zk;t Ri(si, a5) = @D, (%(a [sie)llmo(a |S’“))) behavior of human players. Samples within the same cluster exhibit similar behavior.
Meth ’ “ | |
el _O d_ - | | Results e & mining » Capacity of the discrete goal space: a
» Motivation: recent works show that goal-conditioned behavior cloning on _ | chopping 3 goal can induce varying behaviors
large datasets can effectively model diverse skills in challenging open-world > Kitchen and Minecratft tasks: | | | depending on the context.
environments. We propose PTGM that pre-trains such goal-based models to * PTGM outperforms baselines (SPIRL, TACO, BC-finetune) in sample

efficiency and task performance.
« PTGM does not suffer from forgetting in long-horizon tasks (Iron ore).

accelerate downstream RL. Testtask  Sheep  Pig  Chicken
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p(9) Dataset  PTGM enhances the capabilities of its low-level policy, Steve-1.
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o — § : — —> :“ >a 0.0 AN rf, A, My 0.0 ML e MesmsrnntOrsmeatnsd o . . , » PTGM holds advantages in the sample efficiency, learning stability, interpretability,
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El Environment steps le5 Environment steps le6 Environment steps le6 and generahza’uon of the low-level skills.
n(g) 5 Mine cobblestone Mine iron ore %5 Combat spider » The proposed clustering and goal prior techniques improve sample efficiency.
o " g 03 o » Experiments demonstrate PTGM’s capability to learn on diverse domains and solve
» Pre-Training a Goal-Conditioned Policy = 061 - o) > the challenging Minecraft tasks efficiently.
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